
J O R R I T N . H E R D E R , H E R B E R T B O S ,
B E N G R A S , P H I L I P H O M B U R G ,
A N D A N D R E W S . T A N E N B A U M

modular system
programming in
MINIX 3
Jorrit Herder holds a M.Sc. degree in computer sci-
ence from the Vrije Universiteit in Amsterdam and is
currently a Ph.D. student there. His research focuses
on operating system reliability and security, and he
is closely involved in the design and implementation
of MINIX 3.

jnherder@cs.vu.nl

Herbert Bos obtained his M.Sc. from the University
of Twente in the Netherlands and his Ph.D. from the
Cambridge University Computer Laboratory. He is
currently an assistant professor at the Vrije
Universiteit Amsterdam, with a keen research inter-
est in operating systems, high-speed networks, and
security.

herbertb@cs.vu.nl

Ben Gras has a M.Sc. in computer science from the
Vrije Universiteit in Amsterdam and has previously
worked as a sysadmin and a programmer. He is now
employed by the VU in the Computer Systems
Section as a programmer working on the MINIX 3
project.

bjgras@cs.vu.nl

Philip Homburg received a Ph.D. from the Vrije
Universiteit in the field of wide-area distributed sys-
tems. Before joining this project, he experimented
with virtual memory, networking, and X Windows in
Minix-vmd and worked on advanced file systems in
the Logical Disk project.

philip@cs.vu.nl

Andrew S. Tanenbaum is a professor of computer
science at the Vrije Universiteit in Amsterdam. He
has written 16 books and 125 papers and is a Fellow
of the ACM and a Fellow of the IEEE. He firmly
believes that we need to radically change the struc-
ture of operating systems to make them more reli-
able and secure and that MINIX 3 is a small step in
this direction.

ast@cs.vu.nl

W H E N T H E F I R S T M O D E R N O P E R AT -
ing systems were being developed in the
early 1960s, the designers were so worried
about performance that these systems
were written in assembly language, even
though high-level languages such as FOR-
TRAN, MAD, and Algol were well estab-
lished. Reliability and security were not
even on the radar. Times have changed and
we now need to reexamine the need for
reliability in operating systems.

If you ask ordinary computer users what they like
least about their current operating system, few
people will mention speed. Instead, it will
probably be a neck-and-neck race among mind-
numbing complexity, lack of reliability, and securi-
ty in a broad sense (viruses, worms, etc.). We
believe that many of these problems can be traced
back to design decisions made 40 or 50 years ago.
In particular, the early designers’ goal of putting
speed above all else led to monolithic designs
with the entire operating system running as a sin-
gle binary program in kernel mode. When the
maximum memory available to the operating
system was only 32K words, as was the case with
MIT’s first timesharing system, CTSS, multi-
million-line operating systems were not possible
and the complexity was manageable.

As memories got larger, so did the operating sys-
tems, until we got to the current situation of
operating systems with hundreds of functions
interacting in such complex patterns that nobody
really understands how they work anymore.
While Windows XP, with 5 million LoC (Lines of
Code) in the kernel, is the worst offender in this
regard, Linux, with 3 million LoC, is rapidly
heading down the same path. We think this path
leads to a dead end.

Various studies have shown the number of bugs in
programs to be in the range 1–20 bugs per 1000
LoC [1]. Furthermore, operating systems tend to
be trickier than application programs, and device
drivers have an order of magnitude more bugs per
thousand LoC than the rest of the operating sys-
tem [2, 3]. Given millions of lines of poorly
understood code interacting in unconstrained
ways within a single address space, it is not
surprising that we have reliability and security
problems.

; LO G I N : A P R I L 2 0 0 6 M O D U L A R SYSTE M P RO G R A M M I N G I N M I N I X 3 19

Operating System Reliability

In our view, the only way to improve operating system reliability is to get
rid of the model of the operating system as one gigantic program running
in kernel mode, with every line of code capable of compromising or bring-
ing down the system. Nearly all the operating system functionality, and
especially all the device drivers, have to be moved to user-mode processes,
leaving only a tiny microkernel running in kernel mode. Moving the entire
operating system to a single user-mode process as in L4Linux [4] makes
rebooting the operating system after a crash faster, but does not address
the fundamental problem of every line of code being critical. What is
required is splitting the core of the operating system functionality—includ-
ing the file system, process management, and graphics—into multiple
processes, putting each device driver in a separate process, and very tightly
controlling what each component can do. Only with such an architecture
do we have a chance to improve system reliability.

The reasons that such a modular, multiserver design is better than a mono-
lithic one are threefold. First, by moving most of the code from kernel
mode to user mode, we are not reducing the number of bugs but we are
reducing the power of each bug to cause damage. Bugs in user-mode
processes have much less opportunity to trash critical kernel data struc-
tures and cannot touch hardware devices they have no business touching.
The crash of a user-mode process is rarely fatal, whereas a crash of the ker-
nel always is. By moving most of the code out of the kernel, we are moving
most of the bugs out as well.

Second, by breaking the operating system into many processes, each in its
own address space, we greatly restrict the propagation of faults. A bug in
the audio driver may turn the sound off, but it cannot wipe out the file
system by accident. In a monolithic system, in contrast, bugs in any func-
tion can destroy code and data structures in unrelated and much more crit-
ical functions.

Third, by constructing the system as a collection of user-mode processes,
the functionality of each module can be clearly determined, making the
entire system much easier to understand and simpler to implement. In
addition, the operating system’s maintainability will improve, because the
modules can be maintained independently from each other, as long as
interfaces and shared data structures are respected.

While this article does not focus on security directly, it is important to
mention that operating system reliability and security are closely related.
Security has usually been designed with the model of the multi-user sys-
tem in mind, not a single-user system where that user will run hostile
code. However, many security problems are caused by malicious code
injected by viruses and worms exploiting bugs such as buffer overruns. By
moving most of the code out of the kernel, exploits of operating system
components are rendered far less powerful. Overwriting the audio driver’s
stack may allow the intruder to cause the computer to make weird noises,
but it does not compromise system security, since the audio driver does
not have superuser privileges. Thus, while we will not discuss security
much hereafter, our design has great potential to improve security as well.

The observation that microkernels are good for reliability is not new. In the
1980s and 1990s numerous microkernels were constructed, including L4
[5], Mach [6], V [7], Chorus [8], and Amoeba [9]. None of these succeed-
ed in displacing monolithic operating systems with microkernel-based
ones, but we have learned a lot since then and the time is right to try

20 ; L O G I N : V O L . 3 1 , N O . 2

again. Even Microsoft understands this. The next version of Windows
(Vista) will feature many user-mode drivers, and Microsoft’s Singularity
research project is also based on a microkernel.

The MINIX 3 Architecture

To test out our ideas, we have constructed a POSIX-conformant prototype
system. As a base for the prototype, we used the MINIX operating system
due to its very small size and long history. MINIX is a free microkernel-
based operating system that comes with complete source code, mostly
written in C. The initial version was written by one of the authors (AST)
in 1987, and has been studied by many tens of thousands of students at
hundreds of universities for a period of 19 years; over the past 10 years
there have been almost no bug reports concerning the kernel, presumably
due to its small size.

We started with MINIX 2 and then modified it very heavily, moving the
drivers out of the kernel and much more, but we decided to keep the name
and call the new system MINIX 3. It is based on a microkernel now con-
taining under 4000 LoC, with numerous user-mode servers and drivers
that together constitute the operating system, as illustrated in Figure 1.
Despite this unconventional structure, to the user the system appears to be
just another UNIX variant. It runs two C compilers (ACK and gcc), as well
as many popular utilities—Emacs, vi, Perl, Python, Telnet, FTP, and 300
others. Recently, X Windows has also been ported to it. MINIX 3 is avail-
able at http://www.minix3.org with all the source code under the BSD
license.

F I G . 1 . S K E T C H O F T H E L A Y E R E D A R C H I T E C T U R E O F M I N I X 3

All applications, servers, and drivers run as isolated, user-mode processes. A
tiny, trusted kernel is the only part that runs in kernel mode. The layering is a
logical one, as all user processes are treated equally by the kernel.

Briefly, the microkernel handles hardware interrupts, low-level memory
management, process scheduling, and interprocess communication. The
latter is accomplished by primitives that allow processes to send fixed-
length messages to other processes they are authorized to send to. Most
communication is synchronous, with a sender or receiver blocking if the
other party is not ready. Sending a message takes about 500 nsec on a
2.2GHz Athlon. Although a system call usually takes two messages (a
request and a reply), even 10,000 system calls/sec would use only 1% of
the CPU, so message-passing overhead hardly affects performance at all. In

; LO G I N : A P R I L 2 0 0 6 M O D U L A R SYSTE M P RO G R A M M I N G I N M I N I X 3 21

addition, there is a nonblocking event notification mechanism. Pending
notifications are stored in a compact bitmap that is statically declared as
part of the process table. This message-passing scheme eliminates all ker-
nel buffer management and kernel buffer overruns, as well as many dead-
locks.

The next level up contains the device drivers, one per major device. Each
driver is a user process protected by the MMU the same way ordinary user
processes are protected. They are special only in the sense that they are
allowed to make a small number of kernel calls to obtain kernel services.
Typical kernel calls are writing a set of values to hardware I/O ports or
requesting that data be copied to or from a user process. A bitmap in the
kernel’s process table controls which calls each driver (and server) can
make. Also, the kernel knows which I/O ports the driver is allowed to use,
and copying is possible only with explicit permission.

The operating system interface is formed by a set of servers. The main ones
are the file server, the process manager, and the reincarnation server. User
processes make POSIX system calls by sending a message to one of these
servers, which then carries out the call. The reincarnation server is espe-
cially interesting, since it is the parent process of all the servers and driv-
ers. It is different from init, which is the root of ordinary user processes, as
it manages and guards the operating system. If a server or driver crashes or
otherwise exits, it becomes a zombie until the reincarnation server collects
it, at which time the reincarnation server looks in its tables to determine
what to do. The usual action is to create a new driver or server and to
inform the other processes that it is doing so.

Finally, we have the ordinary user processes, which have the ability to send
fixed-length messages to some of the servers requesting service, but basi-
cally have no other power. While message passing is used under the hood,
the system libraries offer the normal POSIX API to the programmer.

Living with Programming Restrictions

Having explained why microkernels are needed and how MINIX 3 is struc-
tured, it is now time to get to the heart of this article: the MINIX 3 pro-
gramming model and its implications. We will point out some of the prop-
erties, strengths, and weaknesses of the programming model in the text
below, but before we start, it is useful to recall that, historically, restricting
what programmers can do has often led to more reliable code. Let us con-
sider several examples.

First, when the first MMUs appeared, user programs were forced to make
system calls to perform I/O, rather than just start I/O devices themselves.
Of course, some of them complained that making kernel calls was slower
than talking to the I/O devices directly (and they were right), but a con-
sensus eventually emerged saying that this restriction on what a program-
mer could do was worth the small performance penalty, since bugs in user
code could no longer crash the computer.

Second, when E.W. Dijkstra wrote his now-famous letter “Goto Statement
Considered Harmful” [10], a massive hue and cry was raised by many pro-
grammers who felt their style of writing spaghetti-like code was being
threatened. Despite these initial objections, the idea caught on, and pro-
grammers learned to write well-structured programs.

22 ; L O G I N : V O L . 3 1 , N O . 2

Third, when object-oriented programming was introduced, many program-
mers balked at the idea, since they could no longer count on reading or
tweaking data structures internal to other objects, a previously common
practice in the name of efficiency. For example, when Java was introduced
to C programmers, many of them saw it as a straitjacket, since they could
no longer freely manipulate pointers. Nevertheless, object-oriented pro-
gramming is now common and has led to better-quality code.

The MINIX 3 Restrictions

In a similar vein, the MINIX 3 programming model is also more restrictive
for operating system developers than what came before it, but we believe
these restrictions will ultimately lead to a more reliable system. For the
time being, MINIX 3 is written in C, but gradually rewriting some of the
modules in a type-safe language, such as Cyclone, might be possible some-
day. Let us start our overview of the model by looking at some of these
restrictions.

Restricted kernel access. The MINIX 3 kernel exports various kernel calls
to support the user-mode servers and drivers of the operating system. Each
driver and server has a bitmap in the process table that restricts which of
the kernel calls it may use. This protection is quite fine-grained, so, for
example, a device driver may have permission to perform I/O or make
copies to and from user processes, but not to shut down the system, create
new processes, or (re)set restriction policies.

Memory protection. In the multiserver design of MINIX 3, all servers and
drivers of the operating system run as isolated user-mode processes. Each is
encapsulated in a private address space that is protected by the MMU hard-
ware. An illegal access attempt to another process’s memory raises an MMU
exception and causes the offender to be killed by the process manager. Of
course, the file system and device drivers need to interact with user processes
to perform I/O, but this is done using safe virtual copies mediated by the ker-
nel. A copy to another process is possible only when permission is explicitly
given by that process or a trusted process such as the file system. This
design takes away the trust from drivers and prevents memory corruption.

Restricted I/O port access. Each driver has a limited range of I/O ports
that it may access. Since user processes do not have I/O privileges, the ker-
nel has to mediate and can check whether the I/O request is permitted.
The allowed port ranges are set when a driver is started. For ISA devices
this is done with the help of configuration files; for PCI devices the port
ranges are automatically determined by the PCI bus server. The valid port
ranges for each driver are stored in the driver’s process table entry in the
kernel. This protection ensures that a printer driver cannot accidentally
write garbage to the disk, because any attempt to write to the disk’s I/O
ports will result in a failed kernel call. Servers and ordinary user processes
have no access to any I/O ports.

Restricted interprocess communication. Processes may not send messages
to arbitrary processes. Again, the kernel keeps track of who may send to
whom, and violations are prevented. The allowed IPC primitives and desti-
nations are set by the reincarnation server when a new system process is
started. For example, a driver may be allowed to communicate with just
the file server and no other process. This feature eliminates some bugs
where a process tries to send a message to another process that is not
expecting it.

; LO G I N : A P R I L 2 0 0 6 M O D U L A R SYSTE M P RO G R A M M I N G I N M I N I X 3 23

Operating System Development in User Space

Now let us look at some other aspects of the MINIX 3 programming
model. While there are some restrictions, as pointed out above, we believe
that programming in a multiserver operating system environment has
many benefits and may lead to higher productivity and better code quality.

Short development cycle. The huge difference between a monolithic and
a multiserver operating system immediately becomes clear when looking
at the development cycle of operating system components. System pro-
gramming on a monolithic system generally involves editing, compiling,
rebuilding the kernel, and rebooting to test the new component. A subse-
quent crash will require another reboot, and tedious, low-level debugging
usually follows, frequently without even a core dump. In contrast, the
development cycle on a multiserver system like MINIX 3 is much shorter.
Typically, the steps are limited to editing, compiling, testing, and debug-
ging. We will elaborate on these steps below.

Normal programming model. Because drivers and servers are just ordinary
user processes, they can use any libraries that are needed. In some cases,
even POSIX system calls can be used. The ability to do these things can be
contrasted with the more rigid environment available to programmers writ-
ing code for monolithic kernels. In essence, working in user mode makes
programming easier.

No system downtime. The required reboots for a monolithic operating
system effectively kick off all users, meaning that a separate development
system is to be preferred. In MINIX 3, no reboots are required to test new
components, so other users are not affected. Furthermore, bugs or other
problems are isolated in the new components and cannot affect the entire
system, because the new component is run as an independent process in a
restricted execution environment. Problems thus cannot propagate as in a
monolithic system.

Easy debugging. Debugging a device driver in a monolithic kernel is a real
challenge. Often the system just halts and the programmer does not have a
clue what went wrong. Using a simulator or emulator usually is of no use
because typically the device being driven is something new and not sup-
ported by the simulator or emulator. In contrast, in the MINIX 3 model, a
device driver is just a user process, so if it crashes, it leaves behind a core
dump that can be inspected using all the normal debugging tools. In addi-
tion, the output of all printf() statements in drivers and servers automatical-
ly goes to a log server, which writes it to a file. After a failed run with the
new driver, the programmer can examine the log to see what the driver
was doing just before it died.

Low barrier to entry. Because writing drivers and servers is much easier
than in conventional systems, researchers and others can try out new ones
easily. Ease of experimentation can advance the field by allowing people
with good ideas but little experience in kernel programming to try out
their ideas and build prototypes they would not be able to construct with
monolithic kernels. Although the hardest part of writing a new device
driver may be understanding the actual hardware, other operating system
components can be easy to realize. For example, the case study at the end
of this article illustrates how semaphore functionality can be added to
MINIX 3.

High productivity. Because operating system development in user space is
easier, the programmer can get the job done faster. Also, since no lengthy

24 ; L O G I N : V O L . 3 1 , N O . 2

system build is needed once the bug has been removed, time is saved.
Finally, since the system need not be rebooted after a driver crash, as soon
as the programmer has inspected the core dump and the log and has
updated the code, it is possible to test the new driver without a reboot.
With a monolithic kernel, two reboots are often needed: one to restart the
system after the crash and one to boot the newly built kernel.

Good accountability. When a driver or server crashes, it is completely
obvious which one it is (because its parent, the reincarnation server,
knows which process exited). As a consequence, it is much easier than in
monolithic systems to pin down whose fault the crash was and possibly
who is legally liable for the damage done. Holding the producers of com-
mercial software liable for their errors, in precisely the same way as the
producers of tires, medicines, and other products are held accountable,
may improve software quality.

Great flexibility. Our modular model offers great flexibility and makes sys-
tem administration much easier. Since operating system modules are just
processes, it is relatively easy to replace one. It becomes easier to configure
the operating system by mixing and matching modules. Furthermore, if a
device driver needs to be patched, this can usually be done on the fly,
without loss of service or downtime. Module substitution is much harder
in monolithic kernels and often requires a reboot. Finally, maintenance
also becomes easier, because all modules are small, independent, and well
understood.

Case Study: Message-Driven Programming in MINIX 3

We will now evaluate the MINIX 3 programming model aided by a little
case study that shows how semaphore functionality can be added to
MINIX 3. Although this is easier than implementing a new file server or
device driver, it illustrates some important aspects of MINIX 3.

Semaphores are positive integers, equal to or greater than zero, and sup-
port two operations, UP and DOWN, to synchronize multiple processes try-
ing to access a shared resource. A DOWN operation on semaphore S decre-
ments S unless S is zero, in which case it blocks the caller until some other
process increments S through an UP operation. Such functionality is typi-
cally part of the kernel in a monolithic system, but can be realized as a
separate user-space server in MINIX 3.

The structure of the MINIX 3 semaphore server is shown in Fig. 2. After
initialization, the server enters a main loop that continues forever. In each
iteration the server blocks and waits until a request message arrives. Once
a message has been received, the server inspects the request. If the type is
known, the associated handler function is called to process the request,
and the result is returned unless the caller must be blocked. Illegal request
types directly result in an erroneous reply.

As mentioned above, ordinary user processes in MINIX 3 are restricted to
synchronous message passing. A request will block the caller until the
response has arrived. We will use this to our advantage when constructing
the semaphore server. For UP operations, the server simply increments the
semaphore and directly sends a reply to let the caller continue. For DOWN
operations, in contrast, the reply is withheld until the semaphore can be
decremented, effectively blocking the caller until it is properly synchro-
nized. The semaphore has an associated (FIFO) queue of processes to keep
track of processes that are blocked. After an UP operation, the queue is
checked to see whether a waiting process can be unblocked.

; LO G I N : A P R I L 2 0 0 6 M O D U L A R SYSTE M P RO G R A M M I N G I N M I N I X 3 25

void semaphore_server() {
message m;
int result;
/* Initialize the semaphore server. */
initialize();
/* Main loop of server. Get work and process it. */
while(TRUE) {

/* Block and wait until a request message arrives. */
ipc_receive(&m);

/* Caller is now blocked. Dispatch based on message type. */
switch(m.m_type) {

case UP: result = do_up(&m); break;
case DOWN: result = do_down(&m); break;
default: result = EINVAL;

}
/* Send the reply, unless the caller must be blocked. */
if (result != EDONTREPLY) {

m.m_type = result;
ipc_reply(m.m_source, &m);

}
}

}

F I G . 2 . T H E M A I N L O O P O F A S E R V E R I M P L E M E N T I N G
O N E S E M A P H O R E , S

All servers and drivers have a similar main loop. The function initialize() is called
once before entering the main loop, but is not shown here. The handler functions
do_up() and do_down() are given in Fig. 3.

With the structure of the semaphore server in place, we need to arrange
that user processes can communicate with it. Once the server has been
started it is ready to serve requests. In principle, the programmer can
construct request messages and send them to the new server using
ipc_request(), but such details usually are conveniently hidden in the sys-
tem libraries, along with the other POSIX functions. Typically, new library
calls sem_up() and sem_down() would be added to libc to handle these
calls. Although this case study covers a very simplified semaphore server, it
can easily be extended to conform to the POSIX semaphore specification,
handle multiple semaphores, etc.

The modular structure of MINIX 3 helps to speed up the development of
the semaphore server in several ways. First, it can be implemented inde-
pendently from the rest of the operating system, just like ordinary user
applications. When it is finished, it can be compiled as a stand-alone
application and be dynamically started to become part of the operating sys-
tem. It is not necessary to build a new kernel or to reboot the system,
which prevents downtime, other users from being kicked off, disruption of
Web, mail, and FTP servers, etc. When the server is started, its privileges
are restricted according to the principle of least authority, so that testing
and debugging of the new semaphore server can be done without affecting
the rest of the system. Once it is ready, the startup scripts can be config-
ured to load the semaphore server automatically during operating system
initialization.

26 ; L O G I N : V O L . 3 1 , N O . 2

int do_down(message *m_ptr) {

/* Resource available. Decrement semaphore and reply. */
if (s > 0) {

s = s – 1; /* take a resource */
return(OK); /* let the caller continue */

}
/* Resource taken. Enqueue and block the caller. */
enqueue(m_ptr->m_source); /* add process to queue */
return(EDONTREPLY); /* do not reply in order to block the caller */

}

int do_up(message *m_ptr) {
message m; /* place to construct reply message */

/* Add resource, and return OK to let caller continue. */
s = s + 1; /* add a resource */

/* Check if there are processes blocked on the semaphore. */
if (queue_size() > 0) { /* are any processes blocked? */

m.m_type = OK;
m.m_source = dequeue(); /* remove process from queue */
s = s – 1; /* process takes a resource */
ipc_reply(m.m_source, m); /* reply to unblock the process */

}
return(OK); /* let the caller continue */

}

F I G . 3 . up A N D down O P E R A T I O N S
O F T H E S E M A P H O R E S E R V E R

The functions enqueue(), dequeue(), and queue_size() do list management and
are not shown.

Conclusion

MINIX 3 is a new, fully modular operating system designed to be highly
reliable. Like other innovations, our quest for reliability imposes certain
restrictions upon the execution environment, but the multiserver environ-
ment of MINIX 3 makes life much easier for the OS programmer. The
development cycle is shorter, system downtime is no longer required, the
programming interface is more POSIX-like, and testing and debugging
become easier. Programmer productivity is likely to increase, and code
quality might improve because of better accountability. The system admin-
istrator also benefits, since MINIX 3 improves configurability and main-
tainability of the operating system. Finally, we have illustrated the mes-
sage-driven programming model of MINIX 3 with the construction of a
simple semaphore server and discussed how its development benefits from
the modularity of MINIX 3. Interested readers can download MINIX 3
(including all the source code) from http://www.minix3.org. Over 50,000
people have already downloaded it; try it yourself.

R E F E R E N C E S

[1] T.J. Ostrand and E.J. Weyuker, “The Distribution of Faults in a Large
Industrial Software System,” Proceedings of the SIGSOFT International
Symposium on Software Testing and Analysis, ACM, 2002, pp. 55–64.

; LO G I N : A P R I L 2 0 0 6 M O D U L A R SYSTE M P RO G R A M M I N G I N M I N I X 3 27

[2] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An Empirical
Study of Operating System Errors,” Proceedings of the 18th ACM Symposium
on Operating System Principles, 2001, pp. 73–88.

[3] M.M. Swift, M. Annamalai, B.N. Bershad, and H.M. Levy, “Recovering
Device Drivers,” Proceedings of the 6th Symposium on Operating System
Design and Implementation, 2004, pp. 1–15.

[4] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter, “The
Performance of µ-Kernel–Based Systems,” Proceedings of the 16th
Symposium on Operating System Principles, 1997, pp. 66–77.

[5] J. Liedtke, “On µ-Kernel Construction,” Proceedings of the 15th ACM
Symposium on Operating System Principles, 1995, pp. 237–250.

[6] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and M. Young,
“Mach: A New Kernel Foundation for UNIX Development,” Proceedings of
the USENIX 1986 Summer Conference, 1986, pp. 93–112.

[7] D.R. Cheriton, “The V Kernel: A Software Base for Distributed
Systems,” IEEE Software, vol. 1, no. 2, 1984, pp. 19–42.

[8] A. Bricker, M. Gien, M. Guillemont, J. Lipkis, D. Orr, and M. Rozier,
“A New Look at Microkernel–Based UNIX Operating Systems: Lessons in
Performance and Compatibility,” Proceedings of the EurOpen Spring 1991
Conference, 1991, pp. 13–32.

[9] S. Mullender, G. Van Rossum, A.S. Tanenbaum, R. Van Renesse, and
H. Van Staveren, “Amoeba: A Distributed Operating System for the 1990s,”
IEEE Computer Magazine, vol. 23, no. 5, 1990, pp. 44–54.

[10] E.W. Dijkstra, “Goto Statement Considered Harmful,” Communications
of the ACM, vol. 11, no. 3, 1968, pp. 147–148.

28 ; L O G I N : V O L . 3 1 , N O . 2

Please take a minute to complete this month’s

;login: Survey
to help us meet your needs

;login: is the benefit you, the members of USENIX, have rated most

highly. Please help us make this magazine even better.

Every issue of ;login: online now offers a brief survey, for you to

provide feedback on the articles in ;login: . Have ideas about

authors we should—or shouldn’t—include, or topics you’d like to

see covered? Let us know. See

http://www.usenix.org/publications/login/2006-04/

or go directly to the survey at

https://db.usenix.org/cgi-bin/loginpolls/april06login/survey.cgi

